ЗАБА Математические олимпиады и олимпиадные задачи
Задачная база >> Разное >> Математический кружок. 1-й год >> Игры >> Симметричные стратегииУбрать решения
С.А.Генкин, И.В.Итенберг, Д.В.Фомин. Математический кружок. Игры. Симметричные стратегии

Задача 8:

Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.

Решение:

В этой игре выигрывает первый, независимо от размеров стола! Первым ходом он кладет пятак так, чтобы центры монеты и стола совпали. После этого на каждый ход второго игрока начинающий отвечает симметрично относительно центра стола. Отметим, что при такой стратегии после каждого хода первого игрока позиция симметрична. Поэтому если возможен очередной ход второго игрока, то возможен и симметричный ему ответный ход первого. Следовательно, он побеждает.

Задача 9:

Двое по очереди ставят слонов в клетки шахматной доски так, чтобы слоны не били друг друга. (Цвет слонов значения не имеет). Проигрывает тот, кто не может сделать ход.

Решение:

Решение задачи легко провести, применяя осевую симметрию шахматной доски. За ось симметрии можно взять прямую, разделяющую четвертую и пятую горизонтали. Симметричные относительно нее поля имеют разный цвет, и, тем самым, слон, поставленный на одно из них, не препятствует ходу на другое. Итак, в этой игре выигрывает второй игрок.

Задача 10:

Имеется две кучки камней – по 7 в каждой. За ход разрешается взять любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.

Решение: В этой игре второй игрок побеждает при помощи симметричной стратегии: каждым своим ходом он должен брать столько же камней, сколько предыдущим ходом взял первый игрок, но из другой кучки. Таким образом, у второго игрока всегда есть ход.

Задача 11:

Двое по очереди ставят коней в клетки шахматной доски так, чтобы кони не били друг друга. Проигрывает тот, кто не может сделать ход.

Решение:

Выигрывает второй. Можно использовать и центральную, и осевую симметрию.

Задача 12:

Двое по очереди ставят королей в клетки доски 9 × 9 так, чтобы короли не били друг друга. Проигрывает тот, кто не может сделать ход.

Решение:

Выигрывает первый. Первый ход в центр доски, а затем – центральная симметрия.

Задача 13:

а) Двое по очереди ставят слонов в клетки шахматной доски. Очередным ходом надо побить хотя бы одну небитую клетку. Слон бьет и клетку, на которой стоит. Проигрывает тот, кто не может сделать ход.

б) Та же игра, но с ладьями.

Решение:

В обоих пунктах выигрывает первый игрок. а) Осевая симметрия; б) Центральная симметрия. Решающим соображением является то, что если два симметричных поля не побиты, то поля, с которых оба они бьются, также не побиты.

Задача 14:

Дана клетчатая доска 10 × 10. За ход разрешается покрыть любые 2 соседние клетки доминошкой (прямоугольником 1 × 2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход.

Решение:

Выигрывает второй. Центральная симметрия.

Задача 15:

В каждой клетке доски 11 × 11 стоит шашка. За ход разрешается снять с доски любое количество подряд идущих шашек либо из одного вертикального, либо из одного горизонтального ряда. Выигрывает снявший последнюю шашку.

Решение:

Выигрывает первый. Первым ходом он снимает центральную шашку, а потом играет центрально-симметрично.

Задача 16:

Имеются две кучки камней: в одной – 30, в другой – 20. За ход разрешается брать любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.

Решение:

Выигрывает первый. Первым ходом он уравнивает количество камней в кучках, после чего играет как в задаче 10.

Задача 17:

На окружности расставлено 20 точек. За ход разрешается соединить любые две из них отрезком, не пересекающим отрезков, проведенных ранее. Проигрывает тот, кто не может сделать ход.

Решение:

Выигрывает первый. Первым ходом он проводит хорду, по обе стороны от которой расположено по 9 вершин. После этого, на каждый ход второго он отвечает аналогичным ходом по другую сторону от этой хорды.

Задача 18:

У ромашки а) 12 лепестков; б) 11 лепестков. За ход разрешается оторвать либо один лепесток, либо два рядом растущих лепестка. Проигрывает тот, кто не может сделать хода.

Решение:

В обоих пунктах выигрывает второй игрок. Независимо от хода первого игрока, второй может после своего хода оставить две одинаковые по длине цепочки лепестков. Дальше – симметрия.

Задача 19:

Дан прямоугольный параллелепипед размерами а) 4 × 4 × 4; б) 4 × 4 × 3; в) 4 × 3 × 3, составленный из единичных кубиков. За ход разрешается проткнуть спицей любой ряд, если в нем есть хотя бы один непроткнутый кубик. Проигрывает тот, кто не может сделать ход.

Решение:

а) и б) – выигрывает второй. Центральная симметрия. в) Выигрывает первый. Первым ходом он протыкает ряд, состоящий из центральных кубиков четырех слоев 3 × 3. Дальше – центральная симметрия.

Задача 20:

Двое по очереди разламывают шоколадку 5 × 10. За ход разрешается сделать прямолинейный разлом любого из имеющихся кусков вдоль углубления. Выигрывает тот, кто первым отломит дольку 1 × 1.

Решение:

В этой игре проигрывает тот, кто отломит кусок ширины 1. Выигрывает первый игрок. Первым ходом он разламывает шоколадку на два куска 5 × 5. Дальше – симметрия.

Задача 21:

Двое по очереди ставят крестики и нолики в клетки доски 9 × 9. Начинающий ставит крестики, его соперник – нолики. В конце подсчитывается, сколько имеется строчек и столбцов, в которых крестиков больше, чем ноликов – это очки, набранные первым игроком. Количество строчек и столбцов, где ноликов больше – очки второго. Тот из игроков, кто наберет больше очков, побеждает.

Решение:

Выигрывает первый. Первым ходом он ставит крестик в центральную клетку. Затем после каждого хода второго игрока первый ставит крестик в центрально-симметричную клетку.



Задачная база >> Разное >> Математический кружок. 1-й год >> Игры >> Симметричные стратегииУбрать решения