ЗАБА Математические олимпиады и олимпиадные задачи
Задачная база >> Разное >> Материалы Кировской ЛМШ, 2000 г, 6 класс >> Математические игры-4Убрать решения
Разное. Материалы Кировской ЛМШ, 2000 г, 6 класс. Математические игры-4

Задача 1: Найдите выигрышную стратегию для первого игрока в игре «щёлк» на шоколадке 2 × 100.

Решение: Выигрышные позиции – шоколадки, со столбцами длинами n + 1 и n.

Задача 2: Проанализируйте игру «щёлк» на огрызке шоколадки из трёх строчек: 2, n и n + 2 дольки. а) Кто выигрывает при n = 2,3,4,5 б) n – произвольное.

Задача 3: Игра в «двойные шахматы» ведется также, как и в обычные, только игроки делают по 2 хода за раз. Докажите, что в этой игре у второго игрока не может быть выигрышной стратегии.

Решение: Передача хода – ход конём туда-обратно, в результате чего позиция не изменится. Знатоки шахматных правил могут заметить, что на самом деле ситуация в игре всё же не вполне симметрична, так как есть, наример, правило троекратного повторения позиции (и правило 50 ходов). Полезно подумать, как можно ответить на эти возражения.

Задача 4: Докажите, что в игре «щёлк» у первого игрока есть выигрышная стратегия на любой прямоугольной шоколадке, в которой больше одной дольки (предъявлять стратегию не обязательно).

Решение: Вничью игра закончиться не может. Предположим, что выигрышная стратегия есть у второго игрока. Долька, находящаяся в правом верхнем углу съедена в любом случае после первого хода. Если у второго есть выигрышная стратегия, то у него есть выигрышный ответный ход на ход первого, состоящий в поедании только правой верхней дольки. Но этот выигрышный ход первый может с тем же успехом сделать сам с самого начала, а далее воспользоваться выигрышной стратегией второго! (А так ли получается, если в шоколадке всего одна долька?)

Задача 5: На бесконечной доске двое играют в крестики-нолики. Кто поставит пять своих в ряд – по вертикали или горизонтали – выигрывает. Докажите, что при правильной игре первый не проигрывает.

Задача 6: На доске написано число 2. За ход можно к записанному числу прибавить один из его делителей отличный от самого этого числа. Проигрывает тот, кто получит число большее 1000. Докажите, что у первого игрока есть выигрышная стратегия.

Решение: После первых двух ходов всегда получается число 4. Из него можно получить как 5, так и 6, но из 5 можно получить только 6. Следовательно, после числа 4 можно осуществить передачу хода в зависимости от того, выигрышным или проигрышным является число 6.

Задача 7: Двое играют в следующую игру: первый выбирает любое поле на доске 8 × 8, ставит туда а) короля; б) коня и делает ход этой фигурой, причём разрешается ходить только на те клетки, на которые раньше никто не вставал. Далее игроки ходят по очереди. Проигрывает тот, кто не может сделать ход.

Решение: Выигрывает второй. Клетки разбиваются на пары стоящих «ходом короля (коня)», и как только первый поставил короля (коня) на одну из клеток пары, второй ходит на другую.



Задачная база >> Разное >> Материалы Кировской ЛМШ, 2000 г, 6 класс >> Математические игры-4Убрать решения